

Welcome to PyZFS’s documentation!

PyZFS is an MPI-parallelized Python code for the first-principles calculation of the spin-spin zero-field-splitting (ZFS) tensor based on wavefunctions obtained from density functional theory (DFT) calculations.

PyZFS can work with wavefunctions generated by various plane-wave pseudopotential DFT codes including Quantum Espresso (https://www.quantum-espresso.org/) and Qbox (http://qboxcode.org/). PyZFS also supports the standard cube file format. PyZFS computes the spin-spin ZFS tensor from normalized pseudo-wavefunctions without projected-augmented-wave type corrections and is designed to be scalable to large calculations. For instance, PyZFS has been applied to study spin-defects in semiconductors using supercells containing thousands of valence electrons.

	Installation

	Instructions on how to install the PyZFS package.

	Tutorial

	Demonstration of usage of PyZFS with wavefunctions from various DFT codes.

	Code documentation

	Detailed documentation of the PyZFS package.

Installation

PyZFS uses the mpi4py package for parallelization. An existing MPI implementation (e.g. MPICH or OpenMPI) is required to install mpi4py and PyZFS. Many supercomputers provide modules for pre-compiled MPI implementations. To install MPI manually (taking MPICH as example), execute the following command on Linux

$ sudo apt-get install mpich libmpich-dev

or the following command on Mac

$ brew install mpich

PyZFS can be executed with Python 2.7 and Python 3.5+. However, to run PyZFS with Python 2.7 one may need to build certain legacy versions of dependencies such as ase (ase v3.17.0 is tested to work with PyZFS in Python 2).

It is recommended to install PyZFS using pip. First, clone the git repository into a local directory

$ git clone https://github.com/hema-ted/pyzfs.git

Then, execute pip in the folder containing setup.py

$ pip install .

PyZFS depends on the following packages, which will be installed automatically if installed through pip

	numpy

	scipy

	mpi4py

	h5py

	ase

	lxml

If using pip is not possible, one can manually install the above dependencies, and then include the directory of PyZFS repository to the PYTHONPATH by appending the following command to the .bashrc file

$ export PYTHONPATH=$PYTHONPATH:path/to/pyzfs

Tutorial

After installation, PyZFS can be executed in two manners:

	Construct WavefunctionLoader and ZFSCalculation loader from within Python terminal or Jupyter notebook, and call ZFSCalculation.solve to perform the calculation.

An example Python script for computing the ZFS tensor for oxygen molecule is shown below. /path/to/o2.xml should be replaced by the path to the pyzfs/examples/o2_qbox_xml/o2.xml file in the PyZFS folder.

>>> from pyzfs.common.wfc.qboxloader import QboxWavefunctionLoader
>>> from pyzfs.zfs.main import ZFSCalculation
>>> wfcloader = QboxWavefunctionLoader(filename='/path/to/o2.xml') # Construct wavefunction loader
>>> zfscalc = ZFSCalculation(wfcloader=wfcloader) # Set up ZFS calculation
>>> zfscalc.solve() # Perform ZFS calculation

Example Jupyter notebooks can be found at /examples/o2_qbox_xml/run.ipynb and /examples/o2_qe_hdf5/run.ipynb.

	Directly execute PyZFS. This approach works more smoothly with MPI.

For serial execution, simply type the following command in the folder that contains DFT wavefunction file(s)

$ pyzfs [--flags]

For parallel execution, use the following command

$ mpiexec [-n num_of_processes] pyzfs [--flags]

where num_of_processes is the number of processes. PyZFS distributes the calculations on a square grid of processes. If num_of_processes is not a square number, PyZFS will use the largest square number of processes smaller than num_of_processes for calculations.

Note that to use the above pyzfs command, one needs to install PyZFS through pip (see Installation). If one manually added PyZFS directory to the PYTHONPATH without installing it, one needs to replace the above commands with

$ python -m pyzfs.run [--flags]

and

$ mpiexec [-n num_of_processes] python -m pyzfs.run [--flags]

Acceptable flags [–flags] are listed below, for detailed explanation see pyzfs/run.py.

	path: working directory for this calculation. Python will first change the working dir before any calculations. Default is “.”.

	wfcfmt: format of input wavefunction. Default is “qeh5”. Supported values are:

	“qeh5”: Quantum Espresso HDF5 save file. path should contains “prefix.xml” and save folder.

	“qe”: Quantum Espresso (v6.1) save file. path should be the save folder that contains “data-files.xml”, etc.

	“qbox”: Qbox xml file.

	“cube-wfc”: cube files of (real) wavefunctions (Kohn-Sham orbitals).

	“cube-density”: cube files of (signed) squared wavefunction, this option is to support pp.x output with plot_num = 7 and lsign = .TRUE..

	filename: name of the Qbox sample XML file that contains input wavefunction. Only used if wfcfmt = “qbox”.

	fftgrid: FFT grid used. Supported values are “density” or “wave”. “density”: the density grid is used for FFT; “wave”: a reduced grid is used for FFT. Default is “wave”, which is computationally less expensive and is recommended for large-scale calculations.

	memory: Controls whether certain intermediate quantities are kept in memory or re-computed every time. Supported values are “high”, “low” and “critical”, which keeps the decreasing amount of quantities in memory. Default is “critical”, which costs least memory and is recommended for large-scale calculations.

An example execution command for Quantum Espresso HDF5 save file is

$ mpiexec pyzfs --wfcfmt qeh5 --prefix pwscf

where pwscf is the prefix used for the Quantum Espresso calculation.

An example execution command for Qbox XML save file is

$ mpiexec pyzfs --wfcfmt qbox --filename gs.xml

where gs.xml is the XML save file generated by Qbox.

See pyzfs/examples for examples of computing the ZFS tensor for the oxygen molecule and the nitrogen-vacancy (NV) center in diamond.

After PyZFS is executed, the D tensor, its eigenvalues and eigenvectors are printed by the end of the output.
The widely-used scalar D and E parameters are also printed.
A “zfs.xml” file is generated that includes these information, facilitating parsing the results through scripts.

PyZFS can scale to hundreds of MPI processes, and has been applied to systems with up to 3000 valence electrons. For large calculations, typical walltime for a calculation is on the order of 12-24 hours.

Code documentation

PyZFS can be extended to support more wavefunction formats by defining subclasses of WavefunctionLoader abstract class.
The abstract method scan and load have to be override to parse and read the wavefunction data into memory and store as a Wavefunction object.

PyZFS API documentation:

ZFS

	
class pyzfs.zfs.main.ZFSCalculation(**kwargs)

	Bases: object

Zero field splitting D tensor calculation.

Generally, calculation of D tensor involves pairwise iteration over many wavefuctions
(KS orbitals). Physically, wavefunction is uniquely labeled by a 2-tuple of band index (int)
and spin (“up” or “down”). Internally, each wavefunction is labeled by an integer index.
Several maps are defined to describe related transformations.

	
wfc

	container for all KS orbitals

	Type

	Wavefunction

	
cell

	defines cell size, R and G vectors

	Type

	Cell

	
ft

	defines grid size for fourier transform

	Type

	FourierTransform

	
ddig

	dipole-dipole interaction tensor in G space. Shape = (6, n1, n2, n3),
where first index labels cartisian directions (xx, xy, xz, yy, yz, zz), last 3
indices iterate over G space

	Type

	ndarray

	
Iglobal

	global I array of shape (norbs, norbs, 6)
first two indices iterate over wavefunctions, last index labels catesian directions
in xx, xy, xz, yy, yz, xz manner

	Type

	ndarray

	
I

	local I matrix, first two dimensions are distributed among processors

	Type

	ndarray

	
D

	3 by 3 matrix, total D tensor

	Type

	ndarray

	
ev, evc

	eigenvalues and eigenvectors of D tensor

	Type

	ndarray

	
Dvalue, Evalue

	scalar D and E parameters for triplet

	Type

	float

	
get_xml()

	Generate an xml to store information of this calculation.

	Returns

	A string containing xml.

Common

	
class pyzfs.common.wfc.baseloader.WavefunctionLoader(memory='critical')

	A wavefunction loader that can load the wavefunction generated by given
DFT codes into memory, stored as a Wavefunction object.

	
load(iorbs, sdm)

	Load read space KS orbitals to memory, store in wfc.iorb_psir_map.

	Parameters

	
	iorbs – a list of integers representing orbital indices.

	sdm – a SymmetricDistributedMatrix object indicating how the wavefunction is distributed.

	Returns

	After load is called, the wavefunction will be loaded into self.wfc.

	
scan()

	Scan current directory, construct wavefunction object

	
class pyzfs.common.wfc.wavefunction.Wavefunction(cell, ft, nuorbs, ndorbs, iorb_sb_map, iorb_fname_map, dft=None, gamma=True, gvecs=None)

	Container class for Kohn-Sham orbitals

Physically, wavefunction is uniquely labeled by a 2-tuple of band index (int)
and spin (“up” or “down”). Internally, each wavefunction is labeled by an integer index.
Several maps are defined to describe related transformations.

	
norbs

	total number of KS orbitals to be considered

	Type

	int

	
nuorbs/ndorbs

	number of spin up/down orbitals

	Type

	int

	
sb_iorb_map

	(spin, band index) -> orb index map

	Type

	dict

	
iorb_sb_map

	orb index -> (spin, band index) map

	Type

	list

	
iorb_psir_map

	orb index -> orb object (3D array) map

	Type

	dict

	
cell

	defines cell size, R and G vectors

	Type

	Cell

	
ft

	defines grid size for fourier transform

	Type

	FourierTransform

Right now only consider ground state, insulating, spin-polarized case.
No occupation number considerations are implemented yet.

	
compute_psir_from_psig_arr(psig_arr)

	Compute psi(r) based on psi(G) defined on self.gvecs

	
get_psir(iorb)

	Get psi(r) of certain index

	
get_rhog(iorb)

	Get rho(G) of certain index

	
normalize(psir)

	Normalize psir.

	
class pyzfs.common.cell.Cell(ase_cell)

	A wrapper class for ASE Atoms that defines R and G vectors.

	
class pyzfs.common.ft.FourierTransform(n1, n2, n3)

	Define forward/backward 3D FT on a given grid

	Forward/backward FT are defined with following conventions:

	f(G) = 1/omega * int{ f(r) exp(-iGr) dr }
f(r) = sigma{ f(G) exp(iGr) }

	
backward(fg)

	Fourier backward transform a function.

	Parameters

	fg (np.ndarray) – function in G space (3D array)

	Returns

	function in R space (with same grid size)

	
forward(fr)

	Fourier forward transform a function.

	Parameters

	fr (np.ndarray) – function in R space (3D array)

	Returns

	function in G space (with same grid size)

	
interp(fr, n1, n2, n3)

	Fourier interpolate a function to a smoother grid.

	Parameters

	
	fr – function to be interpolated

	n2, n3 (n1,) – new grid size

	Returns

	interpolated function (3D array of size n1 by n2 by n3)

	
class pyzfs.common.parallel.DistributedMatrix(pgrid, shape, dtype)

	An array whose first two dimensions are distributed.

Convention: a variable indexing local block of a distributed matrix should have
trailing “loc” in its name, otherwise it is considered a global index

	
collect()

	Gather the distributed matrix to all processor.

Returns: global matrix.

	
gtol(i, j=None)

	global -> local index map

	
ltog(iloc, jloc=None)

	local -> global index map

	
class pyzfs.common.parallel.ProcessorGrid(comm, square=False)

	2D Grid of processors used to wrap MPI communications.

	
class pyzfs.common.parallel.SymmetricDistributedMatrix(pgrid, shape, dtype)

	A array whose first two dimensions are distributed and symmetric.

	
get_triu_iterator()

	Get a list of 2D indices to iterate over upper triangular part of the local matrix.

	Returns

	list of 2-tuples of ints.

	
symmetrize()

	Compute lower triangular part of the matrix from upper triangular part.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyzfs	

 	
 	
 pyzfs.common.cell	

 	
 	
 pyzfs.common.ft	

 	
 	
 pyzfs.common.parallel	

 	
 	
 pyzfs.common.wfc.baseloader	

 	
 	
 pyzfs.common.wfc.wavefunction	

 	
 	
 pyzfs.zfs.main	

Index

 B
 | C
 | D
 | F
 | G
 | I
 | L
 | N
 | P
 | S
 | T
 | W
 | Z

B

 	
 	backward() (pyzfs.common.ft.FourierTransform method)

C

 	
 	Cell (class in pyzfs.common.cell)

 	cell (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

 	(pyzfs.zfs.main.ZFSCalculation attribute)

 	
 	collect() (pyzfs.common.parallel.DistributedMatrix method)

 	compute_psir_from_psig_arr() (pyzfs.common.wfc.wavefunction.Wavefunction method)

D

 	
 	D (pyzfs.zfs.main.ZFSCalculation attribute)

 	ddig (pyzfs.zfs.main.ZFSCalculation attribute)

 	
 	DistributedMatrix (class in pyzfs.common.parallel)

 	documentation

F

 	
 	forward() (pyzfs.common.ft.FourierTransform method)

 	FourierTransform (class in pyzfs.common.ft)

 	
 	ft (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

 	(pyzfs.zfs.main.ZFSCalculation attribute)

G

 	
 	get_psir() (pyzfs.common.wfc.wavefunction.Wavefunction method)

 	get_rhog() (pyzfs.common.wfc.wavefunction.Wavefunction method)

 	
 	get_triu_iterator() (pyzfs.common.parallel.SymmetricDistributedMatrix method)

 	get_xml() (pyzfs.zfs.main.ZFSCalculation method)

 	gtol() (pyzfs.common.parallel.DistributedMatrix method)

I

 	
 	I (pyzfs.zfs.main.ZFSCalculation attribute)

 	Iglobal (pyzfs.zfs.main.ZFSCalculation attribute)

 	installation

 	
 	interp() (pyzfs.common.ft.FourierTransform method)

 	iorb_psir_map (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

 	iorb_sb_map (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

L

 	
 	load() (pyzfs.common.wfc.baseloader.WavefunctionLoader method)

 	
 	ltog() (pyzfs.common.parallel.DistributedMatrix method)

N

 	
 	norbs (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

 	
 	normalize() (pyzfs.common.wfc.wavefunction.Wavefunction method)

P

 	
 	ProcessorGrid (class in pyzfs.common.parallel)

 	pyzfs.common.cell (module)

 	pyzfs.common.ft (module)

 	
 	pyzfs.common.parallel (module)

 	pyzfs.common.wfc.baseloader (module)

 	pyzfs.common.wfc.wavefunction (module)

 	pyzfs.zfs.main (module)

S

 	
 	sb_iorb_map (pyzfs.common.wfc.wavefunction.Wavefunction attribute)

 	scan() (pyzfs.common.wfc.baseloader.WavefunctionLoader method)

 	
 	SymmetricDistributedMatrix (class in pyzfs.common.parallel)

 	symmetrize() (pyzfs.common.parallel.SymmetricDistributedMatrix method)

T

 	
 	tutorial

W

 	
 	Wavefunction (class in pyzfs.common.wfc.wavefunction)

 	
 	WavefunctionLoader (class in pyzfs.common.wfc.baseloader)

 	wfc (pyzfs.zfs.main.ZFSCalculation attribute)

Z

 	
 	ZFSCalculation (class in pyzfs.zfs.main)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyZFS’s documentation!

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

