
pyzfs

Mar 30, 2020

Contents

1 Installation 3

2 Tutorial 5

3 Code documentation 7
3.1 ZFS . 7
3.2 Common . 8

Python Module Index 11

Index 13

i

ii

pyzfs

PyZFS is an MPI-parallelized Python code for the first-principles calculation of the spin-spin zero-field-splitting (ZFS)
tensor based on wavefunctions obtained from density functional theory (DFT) calculations.

PyZFS can work with wavefunctions generated by various plane-wave pseudopotential DFT codes including Quan-
tum Espresso (https://www.quantum-espresso.org/) and Qbox (http://qboxcode.org/). PyZFS also supports the stan-
dard cube file format. PyZFS computes the spin-spin ZFS tensor from normalized pseudo-wavefunctions without
projected-augmented-wave type corrections and is designed to be scalable to large calculations. For instance, PyZFS
has been applied to study spin-defects in semiconductors using supercells containing thousands of valence electrons.

Contents 1

https://www.quantum-espresso.org/
http://qboxcode.org/

pyzfs

2 Contents

CHAPTER 1

Installation

PyZFS uses the mpi4py package for parallelization. An existing MPI implementation (e.g. MPICH or OpenMPI)
is required to install mpi4py and PyZFS. Many supercomputers provide modules for pre-compiled MPI implementa-
tions. To install MPI manually (taking MPICH as example), execute the following command on Linux

$ sudo apt-get install mpich libmpich-dev

or the following command on Mac

$ brew install mpich

PyZFS can be executed with Python 2.7 and Python 3.5+. However, to run PyZFS with Python 2.7 one may need to
build certain legacy versions of dependencies such as ase (ase v3.17.0 is tested to work with PyZFS in Python 2).

It is recommended to install PyZFS using pip. First, clone the git repository into a local directory

$ git clone https://github.com/hema-ted/pyzfs.git

Then, execute pip in the folder containing setup.py

$ pip install .

PyZFS depends on the following packages, which will be installed automatically if installed through pip

• numpy

• scipy

• mpi4py

• h5py

• ase

• lxml

If using pip is not possible, one can manually install the above dependencies, and then include the directory of PyZFS
repository to the PYTHONPATH by appending the following command to the .bashrc file

3

pyzfs

$ export PYTHONPATH=$PYTHONPATH:path/to/pyzfs

4 Chapter 1. Installation

CHAPTER 2

Tutorial

After installation, PyZFS can be executed in two manners:

1. Construct WavefunctionLoader and ZFSCalculation loader from within Python terminal or Jupyter notebook,
and call ZFSCalculation.solve to perform the calculation.

An example Python script for computing the ZFS tensor for oxygen molecule is shown below. /path/to/o2.xml
should be replaced by the path to the pyzfs/examples/o2_qbox_xml/o2.xml file in the PyZFS folder.

>>> from pyzfs.common.wfc.qboxloader import QboxWavefunctionLoader
>>> from pyzfs.zfs.main import ZFSCalculation
>>> wfcloader = QboxWavefunctionLoader(filename='/path/to/o2.xml') # Construct
→˓wavefunction loader
>>> zfscalc = ZFSCalculation(wfcloader=wfcloader) # Set up ZFS calculation
>>> zfscalc.solve() # Perform ZFS calculation

Example Jupyter notebooks can be found at /examples/o2_qbox_xml/run.ipynb and /exam-
ples/o2_qe_hdf5/run.ipynb.

2. Directly execute PyZFS. This approach works more smoothly with MPI.

For serial execution, simply type the following command in the folder that contains DFT wavefunction file(s)

$ pyzfs [--flags]

For parallel execution, use the following command

$ mpiexec [-n num_of_processes] pyzfs [--flags]

where num_of_processes is the number of processes. PyZFS distributes the calculations on a square grid of
processes. If num_of_processes is not a square number, PyZFS will use the largest square number of processes
smaller than num_of_processes for calculations.

Note that to use the above pyzfs command, one needs to install PyZFS through pip (see Installation). If one
manually added PyZFS directory to the PYTHONPATH without installing it, one needs to replace the above
commands with

5

pyzfs

$ python -m pyzfs.run [--flags]

and

$ mpiexec [-n num_of_processes] python -m pyzfs.run [--flags]

Acceptable flags [–flags] are listed below, for detailed explanation see pyzfs/run.py.

• path: working directory for this calculation. Python will first change the working dir before any calcula-
tions. Default is “.”.

• wfcfmt: format of input wavefunction. Default is “qeh5”. Supported values are:

– “qeh5”: Quantum Espresso HDF5 save file. path should contains “prefix.xml” and save folder.

– “qe”: Quantum Espresso (v6.1) save file. path should be the save folder that contains “data-files.xml”,
etc.

– “qbox”: Qbox xml file.

– “cube-wfc”: cube files of (real) wavefunctions (Kohn-Sham orbitals).

– “cube-density”: cube files of (signed) squared wavefunction, this option is to support pp.x output with
plot_num = 7 and lsign = .TRUE..

• filename: name of the Qbox sample XML file that contains input wavefunction. Only used if wfcfmt =
“qbox”.

• fftgrid: FFT grid used. Supported values are “density” or “wave”. “density”: the density grid is used for
FFT; “wave”: a reduced grid is used for FFT. Default is “wave”, which is computationally less expensive
and is recommended for large-scale calculations.

• memory: Controls whether certain intermediate quantities are kept in memory or re-computed every time.
Supported values are “high”, “low” and “critical”, which keeps the decreasing amount of quantities in
memory. Default is “critical”, which costs least memory and is recommended for large-scale calculations.

An example execution command for Quantum Espresso HDF5 save file is

$ mpiexec pyzfs --wfcfmt qeh5 --prefix pwscf

where pwscf is the prefix used for the Quantum Espresso calculation.

An example execution command for Qbox XML save file is

$ mpiexec pyzfs --wfcfmt qbox --filename gs.xml

where gs.xml is the XML save file generated by Qbox.

See pyzfs/examples for examples of computing the ZFS tensor for the oxygen molecule and the nitrogen-vacancy (NV)
center in diamond.

After PyZFS is executed, the D tensor, its eigenvalues and eigenvectors are printed by the end of the output. The
widely-used scalar D and E parameters are also printed. A “zfs.xml” file is generated that includes these information,
facilitating parsing the results through scripts.

PyZFS can scale to hundreds of MPI processes, and has been applied to systems with up to 3000 valence electrons.
For large calculations, typical walltime for a calculation is on the order of 12-24 hours.

6 Chapter 2. Tutorial

CHAPTER 3

Code documentation

PyZFS can be extended to support more wavefunction formats by defining subclasses of WavefunctionLoader ab-
stract class. The abstract method scan and load have to be override to parse and read the wavefunction data into
memory and store as a Wavefunction object.

PyZFS API documentation:

3.1 ZFS

class pyzfs.zfs.main.ZFSCalculation(**kwargs)
Bases: object

Zero field splitting D tensor calculation.

Generally, calculation of D tensor involves pairwise iteration over many wavefuctions (KS orbitals). Physically,
wavefunction is uniquely labeled by a 2-tuple of band index (int) and spin (“up” or “down”). Internally, each
wavefunction is labeled by an integer index. Several maps are defined to describe related transformations.

wfc
container for all KS orbitals

Type Wavefunction

cell
defines cell size, R and G vectors

Type Cell

ft
defines grid size for fourier transform

Type FourierTransform

ddig
dipole-dipole interaction tensor in G space. Shape = (6, n1, n2, n3), where first index labels cartisian
directions (xx, xy, xz, yy, yz, zz), last 3 indices iterate over G space

7

pyzfs

Type ndarray

Iglobal
global I array of shape (norbs, norbs, 6) first two indices iterate over wavefunctions, last index labels
catesian directions in xx, xy, xz, yy, yz, xz manner

Type ndarray

I
local I matrix, first two dimensions are distributed among processors

Type ndarray

D
3 by 3 matrix, total D tensor

Type ndarray

ev, evc
eigenvalues and eigenvectors of D tensor

Type ndarray

Dvalue, Evalue
scalar D and E parameters for triplet

Type float

get_xml()
Generate an xml to store information of this calculation.

Returns A string containing xml.

3.2 Common

class pyzfs.common.wfc.baseloader.WavefunctionLoader(memory=’critical’)
A wavefunction loader that can load the wavefunction generated by given DFT codes into memory, stored as a
Wavefunction object.

load(iorbs, sdm)
Load read space KS orbitals to memory, store in wfc.iorb_psir_map.

Parameters

• iorbs – a list of integers representing orbital indices.

• sdm – a SymmetricDistributedMatrix object indicating how the wavefunction is dis-
tributed.

Returns After load is called, the wavefunction will be loaded into self.wfc.

scan()
Scan current directory, construct wavefunction object

class pyzfs.common.wfc.wavefunction.Wavefunction(cell, ft, nuorbs, ndorbs, iorb_sb_map,
iorb_fname_map, dft=None,
gamma=True, gvecs=None)

Container class for Kohn-Sham orbitals

Physically, wavefunction is uniquely labeled by a 2-tuple of band index (int) and spin (“up” or “down”). Inter-
nally, each wavefunction is labeled by an integer index. Several maps are defined to describe related transfor-
mations.

8 Chapter 3. Code documentation

pyzfs

norbs
total number of KS orbitals to be considered

Type int

nuorbs/ndorbs
number of spin up/down orbitals

Type int

sb_iorb_map
(spin, band index) -> orb index map

Type dict

iorb_sb_map
orb index -> (spin, band index) map

Type list

iorb_psir_map
orb index -> orb object (3D array) map

Type dict

cell
defines cell size, R and G vectors

Type Cell

ft
defines grid size for fourier transform

Type FourierTransform

Right now only consider ground state, insulating, spin-polarized case. No occupation number considerations
are implemented yet.

compute_psir_from_psig_arr(psig_arr)
Compute psi(r) based on psi(G) defined on self.gvecs

get_psir(iorb)
Get psi(r) of certain index

get_rhog(iorb)
Get rho(G) of certain index

normalize(psir)
Normalize psir.

class pyzfs.common.cell.Cell(ase_cell)
A wrapper class for ASE Atoms that defines R and G vectors.

class pyzfs.common.ft.FourierTransform(n1, n2, n3)
Define forward/backward 3D FT on a given grid

Forward/backward FT are defined with following conventions: f(G) = 1/omega * int{ f(r) exp(-iGr) dr } f(r)
= sigma{ f(G) exp(iGr) }

backward(fg)
Fourier backward transform a function.

Parameters fg (np.ndarray) – function in G space (3D array)

Returns function in R space (with same grid size)

3.2. Common 9

pyzfs

forward(fr)
Fourier forward transform a function.

Parameters fr (np.ndarray) – function in R space (3D array)

Returns function in G space (with same grid size)

interp(fr, n1, n2, n3)
Fourier interpolate a function to a smoother grid.

Parameters

• fr – function to be interpolated

• n2, n3 (n1,) – new grid size

Returns interpolated function (3D array of size n1 by n2 by n3)

class pyzfs.common.parallel.DistributedMatrix(pgrid, shape, dtype)
An array whose first two dimensions are distributed.

Convention: a variable indexing local block of a distributed matrix should have trailing “loc” in its name,
otherwise it is considered a global index

collect()
Gather the distributed matrix to all processor.

Returns: global matrix.

gtol(i, j=None)
global -> local index map

ltog(iloc, jloc=None)
local -> global index map

class pyzfs.common.parallel.ProcessorGrid(comm, square=False)
2D Grid of processors used to wrap MPI communications.

class pyzfs.common.parallel.SymmetricDistributedMatrix(pgrid, shape, dtype)
A array whose first two dimensions are distributed and symmetric.

get_triu_iterator()
Get a list of 2D indices to iterate over upper triangular part of the local matrix.

Returns list of 2-tuples of ints.

symmetrize()
Compute lower triangular part of the matrix from upper triangular part.

Installation Instructions on how to install the PyZFS package.

Tutorial Demonstration of usage of PyZFS with wavefunctions from various DFT codes.

Code documentation Detailed documentation of the PyZFS package.

10 Chapter 3. Code documentation

Python Module Index

p
pyzfs.common.cell, 9
pyzfs.common.ft, 9
pyzfs.common.parallel, 10
pyzfs.common.wfc.baseloader, 8
pyzfs.common.wfc.wavefunction, 8
pyzfs.zfs.main, 7

11

pyzfs

12 Python Module Index

Index

B
backward() (pyzfs.common.ft.FourierTransform

method), 9

C
Cell (class in pyzfs.common.cell), 9
cell (pyzfs.common.wfc.wavefunction.Wavefunction at-

tribute), 9
cell (pyzfs.zfs.main.ZFSCalculation attribute), 7
collect() (pyzfs.common.parallel.DistributedMatrix

method), 10
compute_psir_from_psig_arr()

(pyzfs.common.wfc.wavefunction.Wavefunction
method), 9

D
D (pyzfs.zfs.main.ZFSCalculation attribute), 8
ddig (pyzfs.zfs.main.ZFSCalculation attribute), 7
DistributedMatrix (class in

pyzfs.common.parallel), 10
documentation, 10

F
forward() (pyzfs.common.ft.FourierTransform

method), 9
FourierTransform (class in pyzfs.common.ft), 9
ft (pyzfs.common.wfc.wavefunction.Wavefunction

attribute), 9
ft (pyzfs.zfs.main.ZFSCalculation attribute), 7

G
get_psir() (pyzfs.common.wfc.wavefunction.Wavefunction

method), 9
get_rhog() (pyzfs.common.wfc.wavefunction.Wavefunction

method), 9
get_triu_iterator()

(pyzfs.common.parallel.SymmetricDistributedMatrix
method), 10

get_xml() (pyzfs.zfs.main.ZFSCalculation method), 8

gtol() (pyzfs.common.parallel.DistributedMatrix
method), 10

I
I (pyzfs.zfs.main.ZFSCalculation attribute), 8
Iglobal (pyzfs.zfs.main.ZFSCalculation attribute), 8
installation, 10
interp() (pyzfs.common.ft.FourierTransform method),

10
iorb_psir_map (pyzfs.common.wfc.wavefunction.Wavefunction

attribute), 9
iorb_sb_map (pyzfs.common.wfc.wavefunction.Wavefunction

attribute), 9

L
load() (pyzfs.common.wfc.baseloader.WavefunctionLoader

method), 8
ltog() (pyzfs.common.parallel.DistributedMatrix

method), 10

N
norbs (pyzfs.common.wfc.wavefunction.Wavefunction

attribute), 8
normalize() (pyzfs.common.wfc.wavefunction.Wavefunction

method), 9

P
ProcessorGrid (class in pyzfs.common.parallel), 10
pyzfs.common.cell (module), 9
pyzfs.common.ft (module), 9
pyzfs.common.parallel (module), 10
pyzfs.common.wfc.baseloader (module), 8
pyzfs.common.wfc.wavefunction (module), 8
pyzfs.zfs.main (module), 7

S
sb_iorb_map (pyzfs.common.wfc.wavefunction.Wavefunction

attribute), 9

13

pyzfs

scan() (pyzfs.common.wfc.baseloader.WavefunctionLoader
method), 8

SymmetricDistributedMatrix (class in
pyzfs.common.parallel), 10

symmetrize() (pyzfs.common.parallel.SymmetricDistributedMatrix
method), 10

T
tutorial, 10

W
Wavefunction (class in

pyzfs.common.wfc.wavefunction), 8
WavefunctionLoader (class in

pyzfs.common.wfc.baseloader), 8
wfc (pyzfs.zfs.main.ZFSCalculation attribute), 7

Z
ZFSCalculation (class in pyzfs.zfs.main), 7

14 Index

	Installation
	Tutorial
	Code documentation
	ZFS
	Common

	Python Module Index
	Index

